Unsurpassed quality for reliable performance in critical commercial and industrial applications

SYLVANIA GOLD BRAND ELECTRONIC TUBES

GOLD BRAND TUBE TYPES

Gold Brand tubes for commercial and industrial applications

Suggested GB Replacement	Prototype	Differences Between Prototype and GB Replacement	Suggested GB Replacement	Prototype	Differences Between Prototype and GB Replacement		
GB-0A2WA	OA2	Note 1	GB-5751	12AX7	Note 1; Heater		
GB-0B2WA	OB2	Note 1			Current-		
GB-5Y3WGTA	5Y3GT	Note 1			12AX7=300/150		
GB-6BQ7A	6BQ7A	Note 1			Ma; GB-5751 =		
GB-6CY5	6CY5	Note 1			350/175 Ma		
GB-6DJ8	6DJ8	Note 1	GB-5814A	12AU7	Note 1; Heater		
GB-1252/6U8A	6U8A	Note 1			Current-12AU7=		
GB-6J4WA	6J4	Note 1			300/150 Ma;		
GB-6SL7WGT	6SL7GT	Note 1			GB-5814A=		
GB-6SN7WGT	6SN7GT	Note 1			350/175 Ma		
GB-6X4WA	6X4	Note 1	GB-5931	5U4G, GB	Note 1; Bulb-		
GB-6X5WGT	6X5GT	Note 1	GD 0501	00 IG, GD	5U4G=ST-16;		
GB-7AK7		Note 1			5U4GB,		
GB-407A	407A	Note 1			GB-5931=T-12		
GB-408A	408A	Note 1	GB-5932	6L6G, GA, GB,	Note 1; Bulb-		
GB-5654	6AK5	Note 1	ab obol	GC	6L6G=ST-16		
GB-1219/					6L6GA=ST-14;		
5670		Note 1; Suggested			GB-5932, 6L6GB,		
5070		replacement for			$GC = T \cdot 12$		
		2C51 and GB-5670	GB-5933	807	Note 1; Bulb-		
		where Gm at low	GD 0500	007	807=ST-16;		
		heater voltage is			GB-5933=T-12		
OD 1000/		critical.	GB-6005	6AQ5	Note 1		
GB-1220/		Note 1; GB-1220/	GB-6080	6AS7G, GA	Note 1; Bulb—		
5654		5654 features ferrite	GD 0000	onor a, an	6AS7G=ST-16;		
		isolator to prevent			GB-6080, 6AS7GA=		
		parasitic oscillation			T-12		
		in critical appli-	GB-6101	6J6	Note 1		
GB-5670	0051	cations.	GB-6135	6C4	Note 1; Heater		
GB-3070	2C51	Note 1; Heater—	000105	004	Current—		
		2C51=300 Ma;			6C4=150 Ma;		
CD 5C07	5007	GB-5670=350 Ma			GB-6135=175 Ma		
GB-5687	5687	Note 1	GB-6136	6AU6	Note 1		
GB-5725	6AS6	Note 1	GB-6186	6AG5	Note 1		
GB-5726	6AL5	Note 1	GB-6189	12AU7	Note 1		
GB-5727	2D21	Note 1	GB-6201	12AU7 12AT7	Note 1		
GB-5749	6BA6	Note 1	GB-7327		Note 1		
GB-5750	6BE6	Note 1					
			GB-7550		Note 1		

NOTE~1;~GB~Type manufactured and tested to meet Sylvania reliable GB specification.

Reliability in diversified industrial usage

These applications demand the long life and stable performance that only Sylvania GB Gold Brand Tubes offer. The GB prefix denotes an outstanding product design—engineered to the specialized requirements of critical commercial and industrial service.

GB BUILT-IN RELIABILITY Qualities of GB Gold Brand Tubes are 10,000hour life, exceptional stability, maximum uniformity, and extreme physical ruggedness.

These qualities are designed and built-into GB Gold Brand Tubes—they cannot be tested in—through:

1. The use of specialized processes, materials, and methods emanating from continuous research programs in metallurgy, chemistry, and basic tube technology. Built-in features and their contributions to elimination of common failure mechanisms are described on Pages 4 and 5.

2. Uncompromising quality standards which are rigidly maintained at each development stage. The extent of this control program is best indicated by the fact that one out of every three plant employees is engaged in quality control.

 $\ensuremath{\textbf{3.}}\xspace$ Automated production of tube parts and subassemblies for maximum uniformity.

Close cooperation between Sylvania and the customer in analyzing equipment field problems has also played an important role in successful attainment of mutual objectives.

GB RELIABILITY ASSURANCE GB Gold Brand Specifications are objective reliability standards and are the user's assurance of built-in reliability. GB Gold Brand Specifications embody many of the proven principles contained in military specifications, but are tailored to meet applications in commercial and industrial areas. Each Gold Brand Tube is controlled and tested according to the specifications for that particular type.

Typical tests and controls are: Multiple Life Tests at high temperature and room temperature conditions; 500 g Impact Shock Tests; Extended 2.5-g Fatigue and 10-g Vibration Tests; Thermal Shock Tests (Glass Strain); Low Pressure Breakdown (High Altitude); Basic Tube Parameters—controlled to 0.65% AQL; Noise and Vibration to 2.5% AQL; and Continuity & Shorts to 0.4% AQL.

These and other GB Gold Brand Tests and Controls are summarized on Pages 8 and 9 of this booklet.

Your Sylvania Representative will be pleased to discuss specific field problems and provide you with complete technical data for Sylvania GB Gold Brand Commercial & Industrial Tubes.

Reliability through structural and pr

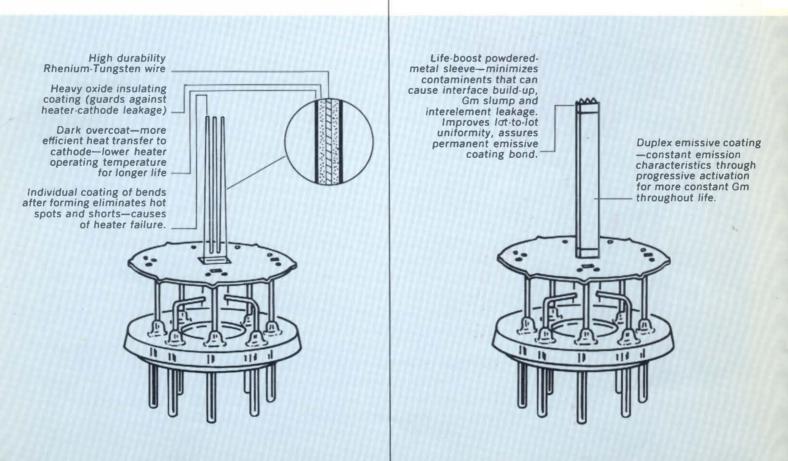
High reliability heaters

Catastrophic failures of the heater-cathode complex, due to embrittlement or breakage of the heater, are virtually eliminated by the use of Rhenium-Tungsten wire.

Tests have proven Rhenium-Tungsten's superior qualities of ductility and high recrystallization temperature, after thousands of hours of life testing. Also the higher internal resistance of Rhenium wire versus ordinary wire allows the use of a larger diameter heater, adding substantially to the mechanical strength.

A PROPERLY APPLIED AND PROCESSED "Dark Overcoat" further enhances reliability through more efficient heat radiation to the cathode. This allows optimum cathode temperature to be maintained with a lower heater temperature resulting in increased stability and longer heater life.

The merits of both techniques are recognized and are applied to best advantage based on individual needs.


Life boost cathode

Sylvania has long been recognized as a leader in the field of cathode technology. Several recent accomplishments have greatly increased cathode reliability and stability.

Life boost cathode sleeves, which are formed from base metal produced by cold-rolling a blend of powdered metals, have a distinct advantage in controlling sublimation and insulation resistance. The precise control of the mixing, that is achieved in the powdered state and subsequent cold processing, assures more uniform characteristics and excludes unwanted impurities to a degree never before achieved.

Inherent surface characteristics of the powdered metal permits exceptional adherence of the coating material, practically eliminating interface resistance and loose or flaking coatings.

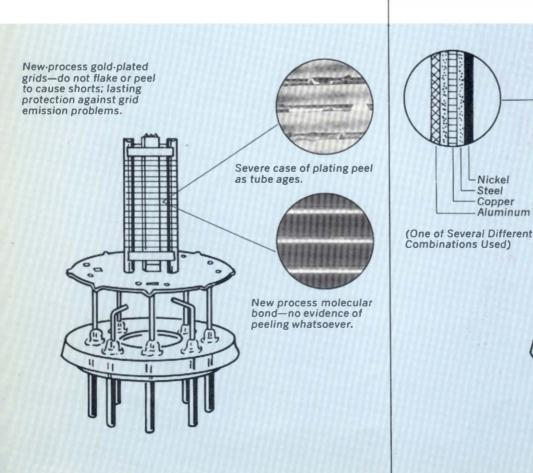
Duplex cathode coatings have been developed which exhibit very stable life characteristics. These coatings are actually a mixture of different emissive materials, which are progressively activated throughout life. This built-in booster effect maintains the emissive level thereby reducing Gm slump during life by a marked percentage.

ocessing advances

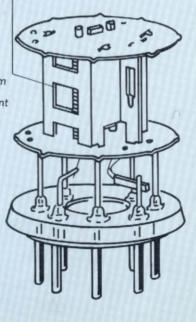
Bonded gold grids

Gold plated grids are not new to the area of reliable industrial tubes. Gold applied to the grid lateral wires has long been an effective measure in preventing both primary and secondary emission from the grid.

Methods of plating used in the past sometimes led to undesirable conditions of flaking and peeling of the gold. This resulted in the loss of protection against grid emission and the danger of interelement shorts and contamination of neighboring elements, especially the cathode.


Sylvania's Gold Brand research has developed a new plating process whereby the problems of the older methods are eliminated. A strong molecular bond is now achieved between the gold and the lateral wire, forming essentially one solid material rather than depending on adhesive action. Sylvania's gold grids remain gold grids throughout tube life.

High dissipation safety factor plates


Many different specialized techniques are used to achieve plate dissipation capabilities that amply fulfill application requirements. The most recent development is a laminated design comprised of as many as five different metals.

The new design conducts heat much more uniformly and radiates it much more efficiently. A higher dissipation safety factor is thereby obtained for critical applications and "hot spots" and resultant "gasing," which lead to premature replacement, are eliminated.

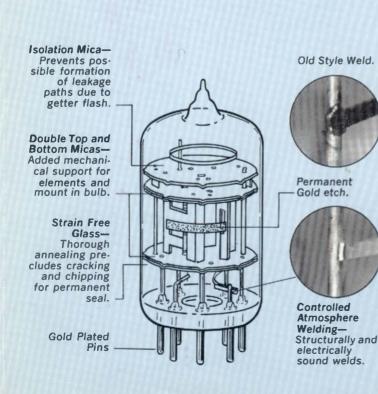
Sylvania GB Gold Brand tubes are carefully design-engineered to application requirements and appropriate special materials and constructional features are utilized to assure built-in reliability. All special features noted are not necessarily included in any one GB tube type, but are employed based on thorough analysis of individual requirements.

New laminated plate construction—Uniform heat conduction and dissipation —Eliminates hot-spots, often the cause of gasing; adds dissipation safety factor

Gold Brand plus features

STRATEGICALLY LOCATED ISOLATION MICAS improve initial insulation resistance between elements and leads by containing getter flash.

DOUBLE TOP AND BOTTOM MICAS with more contact points support elements more securely by increasing bearing surface and providing tighter fit in bulb.


These two features greatly improve shock and vibration characteristics thereby minimizing micro-phonic tendencies under extreme conditions.

CONTROLLED ATMOSPHERE WELDING—by executing all welds in a reducing atmosphere, cleaner, more uniform and rugged welds are obtained. Weld splash is greatly reduced, minimizing loose and dangling metallic particles.

GOLD PLATED PINS on all miniature types resist corrosion and assure low resistance contact.

NEW PRECISION CONTROLLED ANNEALING TECHNIQUES result in the best glass quality ever offered the industry.

QUALITY RIGHT DOWN TO THE ETCH—special goldink etch for lasting identity.

10,000 Hour Reliability

The Gold Brand line provides a design capability of 10,000 hours average life supported by millions of test hours of operation under the most demanding conditions.

Electrical stability Maximum uniformity Extended life-span Physical ruggedness Long-range economy

Examine and compare the special materials, constructions and processes used by Sylvania to build the elements of reliability into every Gold Brand tube.

Assured reliability in actual application

These typical tests are from GB Gold Brand Acceptance Specifications-which are your assurance of built-in reliability and optimum performance in critical commercial and industrial applications.

MIL-E-1 Ref.		AQL	Limits					1112
	Test	(%)	Min.	LAL	Bogey	UAL	Max.	Units
MEASUREMI	ENTS ACCEPTANCE TESTS							
E-1301	Heater Current:	These	tests	are ty	pical of	the c	ontrols	mA
E-1336	Heater-Cathode Leakage:	impos	ed on	the ini	tial char	acteris	stics of	#Adc
E-1266	Grid Current:	Gold Brand tubes. Most basic tube					c tube	#Adc
E-1256	Plate Current (1):	parameters are controlled to .65% AQL				% AQL	mAdc	
E-1256	Plate Current (2):	while detrimental items such as Noise				Noise		
	Cutoff	and \	libratio	n are	control	led to	either	#Adc
E-1306	Transconductance (1):	2.5%	or 6.5%	% AQL	All Gold	d Bran	d types	µmhos
E-1201	Continuity and Shorts	are co	ntrolle	d for I	educed	Ef cha	racter-	
D-20	Mechanical:	istics	and vi	bration	at a 10	G lev	el on a	
E-1211	Insulation of Electrodes:	lot by	lot ba	sis.				Meg
E-1306	Transconductance (2): Sm	-						%
	Ef=Reduced Δ Ef	Conti	nuity a	nd she	orts are	contro	lled to	
E-1256	Plate Current (1) Difference Between		1% AQ					
	Sections							mAdc
E-1256	Plate Current (3): Cutoff							#Adc
E-1266	Grid Emission:							⊬Adc
-	Pulse Cathode Current:							mAdc
E-1241	RF Noise:							
E-2201	Noise and Micro:							
	AC Emission:							mAdc
E-1316	Amplification Factor:							
E-1306	Transconductance (3):							
	Special Controls							
	Zero Bias, etc.							#mhos
E-1331	Capacitance:							
	All Applicable Measurements							pf
E-1002	Low Pressure Voltage Breakdown:							PI
2-1002	Pressure=21±=mm Hg.;							
	Voltage=500 Vac							
E-1031	Vibration (1): 10 G's							mVac
						_		mvuo
DEGRADATIC	ON RATE ACCEPTANCE TESTS:							
E-1041	Shock: High Impact Machine	These	destr	uctive	tests a	re pert	formed	
	(500 G, 1 msec)	on eit	her a	lot or	periodi	c basi	s. The	
E-1031	Fatigue:	shock	test n	ormall	y at a 5	00 G	evel is	
	G=2.5; F=25 cps min,	perfor	med o	n a hi	gh impa	ct sho	ck ma-	
	60 cps max;	chine	design	ed es	pecially	for tes	ting of	
	Fixed Frequency		-		fter the		-	Hours
_	Post Shock and Fatigue Test End Points:				ube sa			
	Heater-Cathode Leakage				n, trans			⊬Adc
	Vibration (2)	•			kage and			mVac
	Transconductance (1)				its pern			µ-mhos
	Grid Current				charact			"Adc

Grid Current **Glass Strain Thermal Shock Test** small change in characteristics from the initial values.

MIL-E-1 Ref.		Allowable Defectives per Characteristic			Limits			
	Test	AQL (%)	1st Sample	Combined Samples	Min. Max.	Units		
ACCEPTANC	E LIFE TESTS:			111111		1111111		
E-1506	Heater Cycling Life Test:	The heater cycle test is conducted on						
	(15,000 Cycles Min.)	each lot						
	1 min. on, 1 min. off	heaters	in the G	old Brand t	ube. This			
4.7.1	Stability Life Test:			erformed w				
4.7.3	Stability Life Test End Point:			bove rated				
	Change in Transconductance (1)	tubes ar						
	of Individual Tubes 4Sm t	15,000 cycles.				%		
E-1501	Intermittent Life Test:	Stability	life tests	are included	l as a con-			
	Stability Life Test Conditions;	trol on e	y stability					
	Bulb Temp. = Max. Rated	of chara	cteristics.	The sample	e is meas-	Hours		
4.7.3	Intermittent Life Test End Points:	ured init	ially and a	at 2 and 20 l	nours.			
	(500 Hours)							
	Inoperatives	The inte	rmittent	life test is o	conducted			
	Grid Current			for 1000 ho		⊭Adc		
	Heater Current			ulb tempera		mA		
	Change in Transconductance (1) of	test is d						
	Individual Tubes 2Sm			es the assu		%		
	t			and unifor	-			
	Transconductance (2) ΔSm			are specifie		%		
	Ef			Juct control				
	Heater-Cathode Leakage			a great de countered in		#Adc		
	Insulation of Electrodes		Meg					
	Transconductance (1) Average	mai tube	e usage re	equirements		%		
	Change Avg. ∆Sm t					70		
	Interface Impedance					Ohms		
	Total Defectives					Onns		
4.7.3	Intermittent Life Test End Points:							
1.7.0	(1000 Hours)							
	Inoperatives							
	Grid Current					⊬Adc		
	Heater Current					mA		
	Change in Transconductance (1) of							
	Individual Tubes △Sm					%		
	t							
	Transconductance (2) △Sm					%		
	Ef							
	Heater-Cathode Leakage					#Adc		
	Insulation of Electrodes					Meg		
	Interface Impedance					Ohms		
	Total Defectives							

States and second second

9

SYLVANIA ELECTRONIC COMPONENTS GROUP SALES OFFICES

ATLANTA

2115 Sylvan Road, S.W. Atlanta, Georgia 30310 404/766-3633

BALTIMORE

31 Allegheny Avenue Towson, Maryland 21204 301/823-2550

BOSTON

Wakefield Office Bldg., Lakeside Park Door 2, Wakefield, Mass. 01880 617/933-3500

CHICAGO

2001 N. Cornell Avenue Melrose Park, Illinois 60160 312/345-0100

CLEVELAND

4848 West 130th Street Cleveland, Ohio 44135 216/267-6800

DALLAS

100 Fordyce Street Dallas, Texas 75207 214/741-4836

DAYTON

333 West First Street Dayton, Ohio 45402 513/223-6227

DENVER

4675 Holly Street Denver, Colorado 80216 303/227.1188

DETROIT

10800 Ford Road Dearborn, Michigan 48126 313/582-8754

DISTRICT OF COLUMBIA 1120 Connecticut Avenue, N.W. Washington, D.C. 20036 202/337-6600

EMPORIUM

West Third Street Emporium, Pa. 15834 814/483-3301

FORT WAYNE 4740 Coldwater Road Ft. Wayne, Indiana 46805 219/483-1145

HARTFORD

100 Constitution Plaza Hartford, Conn. 06103 203/249-7611

KANSAS CITY 450 Funston Road Kansas City, Kansas 66115 913/371-3773

LOS ANGELES

6505 E. Gayhart Street Los Angeles, California 90054 213/723-5371

> METROPOLITAN NEW YORK 1000 Huyler Street Teterboro, New Jersey 07602

GENERAL TELEPHONE & ELECTRONICS GT&E

201/288-9484

MINNEAPOLIS

2211 E. Hennepin Street Minneapolis, Minn. 55413 612/331-9363

NEW ORLEANS 5510 Jefferson Highway New Orleans, La. 70123 504/733-6970

ORLANDO 1520 Edgewater Drive Orlando, Florida 32804 305/241-9681

PHILADELPHIA

4700 Parkside Avenue Philadelphia, Pa. 19131 215/477-5000

PITTSBURGH

191 Cochran Road Pittsburgh, Pa. 15220 412/531-4974

PORTLAND

2828 S. W. Corbett Avenue Portland, Oregon 97201 503/227-1188

SAN FRANCISCO

1811 Adrian Road Burlingame, California 94010 415/697-3500

> SEATTLE 750 S. Michigan Street Seattle, Washington 98108 206/725-2600

SENECA FALLS Johnston Street Seneca Falls, New York 13148 315/568-5881

SPRINGFIELD 6610 Electronic Drive

Springfield, Virginia 22150 703/354-3100

ST. LOUIS

5010 Kemper Avenue St. Louis, Missouri 63139 314/664-8974

SYRACUSE

5700 W. Genesee Street Camillus, New York 13031 315/672-3111

INTERNATIONAL 730 Third Avenue New York, N.Y. 10017 212/551-1000

CANADA

6233 Cote de Liesse Road Montreal 9, Quebec, Canada 514/631-4201

EUROPE, AFRICA, NEAR EAST

21 – Rue du Rhone Geneva, Switzerland

JIVANIA

Seattle, W 206/725-2