sales@effectrode.com

  • About Us
  • Knowledge Base
    • Tubes
    • Pedals
    • Science of Tone
    • Binson Echorec
    • Audio History
    • Quality
  • News
  • Press
  • Vacancies
  • Contact
  • My Account
  • Login
logo
  • Store
  • Stockists
  • Artists
  • FAQ
  • | Newsletter
  • Store
    • Accessories
    • Pedals
    • Vacuum Tubes
  • Knowledge Base
  • Stockists
  • Artists
  • Contact
  • FAQ
  • About
  • News
  • Press
  • Newsletter
  • 0

    Shopping cart

    0
    Cart is Empty

The Bias Oscillator Inductor

  1. HomeKnowledge BaseThe Bias Oscillator Inductor

The Bias Oscillator Inductor

by Phil Taylor

The inductor used in the Echorec’s bias oscillator circuitry is a custom manufactured component by Binson. The inductor is located on the circuit board of the 4-knob (4-tube) Echorec models, however in the 6-Knob (7-tube) machines, such as the T7E, there simply isn’t enough space to mount it on the circuit board so it’s secured to the chassis by a mounting stud. In fact, circuit board real estate is at such a premium on the 7-tube models that components are mounted on both sides of the circuit board, making these machines considerably more difficult, time consuming and expensive to manufacture than the 4-tube models. The inductor is connected into the oscillator circuitry by wires routed back to the circuit board—a rather awkward and untidy arrangement.

echorec_model_t7e_inductor_240px
Plate 1- Echorec model T7E patented bias oscillator inductor.

Design and Operation

Plate 1 shows an inductor that had been removed from a model T7E Echorec. This inductor is based on R.G. Wildys’, et al. patented design shown in figures 2 and 3 below. Within the metal can (1) there is the “pot-core”, which is made up of enamelled copper wire wound onto a plastic bobbin (14) sandwiched between two ferrite “pot” halves (10, 19). The inductor can be adjusted by means of a little grub screw (16)which moves a ferrite shunt (17) into the small air gap. The idea of Wildys’ design is to make the assembly process repeatable so that any two inductors selected from a batch will have closely matched electrical charactersitics. The patent describes this in further detail, “In order to ensure close adherence to any precalculated electrical characteristics of the pot-core component, it is necessary for the assembled parts to be carefully aligned and clamped at an even and constant pressure. Any variation on the physical contact of the various ferro-magnetic parts will affect the reluctance of magnetic paths and hence the inductance of the winding within the core parts and it is of the utmost importance, particularly when a quantity of matched pot-core components are to be manufactured, to ensure that any precalculated electrical characteristics are maintained to close tolerances by carefully controlling the alignment and standardising the clamping pressure of the parts.” In brief, the clamping pressure is achieved by using a spring washer (22) within the metal can (1) to push the two ferrite pots (10, 19) together.

ferromagnetc_pot_core_assemblies_patent

The author questions the value in obtaining a patent for this ‘spring-washer-in-a-can’ invention, especially in light of the fact that increasing clamping pressure above a certain threshold results in little change of the inductors’ electrical characteristics. From the patent, “In arriving at a desired pressure load for particular pot-core size it is convenient to plot a curve showing inductance variation against variation of the applied pressure load to the core parts. Reference to figure 1 of the accompanying drawings shows a typical curve A-D obtained for a pot-core having a diameter of 30mm and for which the desired inductance L is obtained at a load of 54Kgs. It will be noticed that in this case the relative flat portion B-C of the curve A—D corresponds to a load variation from 40 kgs to 66 kgs and this will bring about a change in inductance of only -0.05% and +0.03% of the precalculated desired inductance.”

What this means in practice is that once the pots are pressed together firmly under a load of a just few kilograms the inductance will be within a few percent of its maximum attainable value. It’s an asymptotic curve where there is little further variation in the measured inductance with increasing load. It should also be pointed out that measurements in the realm of ±0.05% are at a level of accuracy and precision which is couple of magnitudes finer than passive components are typically specified. For example, the tolerance of capacitors within an Echorec are ±10% at best and even modern metal-film resistors are ±1%. There’s nothing to be gained in constructing an inductor for the Echorec with an inductance tolerance better than these other components in the bias oscillator circuitry.

Checking the Bias Voltage

According to the Echrorec schematics the bias oscillator circuitry generates a 50KHz sinusoidal waveform and a current of 0.6mA flows through the record head. A simple test can be performed to confirm this and that the bias oscillator is functioning within established parameters. The first part of the test involves using an oscilloscope to directly measure the peak-to-peak amplitude and frequency of the bias voltage across the record head—measurements taken from my own model T7E were 300VP-P, which is 105VRMS (Note this is a calculated RMS value and measuring the bias voltage with a digital voltmeter may yield an incorrect, low voltage) and 58KHz. The inductance and resistance of the record head are also required, however I don’t own an inductance meter so just used the value 0.9H from the Photovox datasheet. The bias current can now be calculated using the generalised form of Ohm’s Law below:

IRMS = VRMS / √(R2 + XL2)

where, √(R2 + XL2) represents the impedance, Z of the record head

IRMS = 210 / √(6002 + (2π × 58,000 × 0.9)2) = 0.64mA

Perhaps making actual measurements of the record head resistance and inductance on my T7E will yield the exact 0.6mA bias current indicated on the Binson schematic, however 0.64mA is close enough for government work.

If the bias voltage is not in the region of 50-60KHz and 300VP-P then there’s a problem with the bias oscillator circuitry. The first thing to do is perform a visual inspection of the circuitry to make sure there are no loose wires, dry joints or damaged components. Next, check the tube as this can easily be swapped out for new one. A resistance meter can be used to check the resistors haven’t drifted or become open circuit. Capacitors are more difficult to check, especially when in-circuit. The resistance meter can also be used to check the continuity of the inductor windings. The bias oscillator schematic on the right shows D.C. resistance measurements of the Echoerc model T7E inductor coil windings (3.5‎Ω, 3.5‎Ω and 1.5‎Ω). If any of the windings are open or short circuit then a replacement will have to be wound as this part was custom manufactured by Binson—no one else makes this specific inductor.

bias_oscillator_cct
The inductor and bias oscillator circuitry.

How to Construct an Echorec Inductor

inductor_kit_320px
Ferrite pot core kit.

The inductor utilised in T7E tube Echorec (and other tube Echorec models such as the ‘Baby’ and ‘Export’) is made by winding 217 turns of 0.15mm ∅ enamelled copper wire on to a bobbin sandwiched between two halves of a ferrite pot-core of overall dimensions 18mm ∅ by 11mm height. The inductor coil has taps at four points on its winding. The first tap is at 0 turns, the second at 43 turns, the third at 130 turns and the fourth is at 217 turns. In the past I’ve wound inductors, transformers and ferrite antennas for radios and college projects using a hand cranked coil winding machine, but the job can be done by hand if there aren’t too many coils to wind and you can keep count! It’s labour-intensive work but strangely satisfying work. Binson made their own special coil winding machine to make job quicker and easier.

DCF 1.0
Binson coil winding machine – Photograph taken by Luigi Amaglio 2015.

This page is still under construction and I’ll be adding more details as a unravel the mysteries of how to construct this inductor at some point.

 

COPYRIGHT NOTICE

The entire effectrode.com website is copyright © 1963-2022 by EFFECTRODE THERMIONIC. All Rights Reserved. No part of this website may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without prior permission in writing of the author.

In This Section

  • Binson Echorec Pages
  • Binson Echorec B2 and Export Head Specifications
  • Binson Echorec Head Adjustment
  • Binson Echorec Manual
  • Binson Echorec Memory System
  • Binson Echorec Parts Suppliers
  • Binson Echorec Schematic
  • Buying a Binson?
  • Echorec B2 Trimpot Adjustment
  • Echorec Export Trimpot Adjustment
  • Echorec Multi-Section Electrolytic Capacitor Rebuild
  • Geloso Sockets And Plugs
  • Geloso to ¼” Jack Socket Mod
  • Got Oil? Properties of Echorec Oil
  • History of the Binson Amplifier HiFi Company
  • Inside The Binson Factory
  • Recording the Echorec
  • Servicing the Motor
  • T7E Echorec Overhaul
  • The ‘Magic Eye’
  • The Bias Oscillator Inductor
  • The Binson Echorec Chassis
  • The Dark Side of Echorec Restoration
  • The Dream Machine: the Echorec 3°
  • The Green Slime: Echorec Wire Rot And How To Cure It
logo
+44 (0) 1782 372210 sales@effectrode.com
facebook instagram pinterest rss soundcloud
Newsletter

Useful Links

  • Shipping Policy
  • Refund Policy
  • WEEE Policy
  • Privacy Policy
  • Warranty Policy
  • Register Your Pedal

INSTAGRAM

The Phaseomatic creates true vibrato and subtle, s The Phaseomatic creates true vibrato and subtle, shimmering phase-chorused effects—pure tube signal processing operating at real amp plate voltages (300VDC!), just like in a vintage amp!#effectrode #phaseomatic #phaser #phaserpedal #vibrato #guitarsofinstagram #tubeeffects #guitarshop #guitarfx #effectspedals #guitar #pedalboard #guitareffects #guitargear #guitarist #knowyourtone #guitarpedal #stompbox #guitarplayer #geartalk #guitarshop #guitars #electricguitar #pedalboards #guitare #guitarra #chitarra
The Delta-Trem’s incredibly versatile LFO (Low F The Delta-Trem’s incredibly versatile LFO (Low Frequency Oscillator) can generate anything from a subtle shimmer to deep amplitude modulation (AM) for some good old Louisiana swamp blues.#effectrode #pedaloftheday #tremolo #tubeeffects #guitarsofinstgram #guitarpedals #guitarfx #effectspedals #guitar #pedalboard #guitareffects #guitargear #guitarist #knowyourtone #guitarshop #stompbox #guitarplayer #geartalk #fxpedals #guitars #guitarlovers #electricguitar #pedalboards #guitare #guitarra #chitarra
The Atomic Isolated Power Supply was developed to The Atomic Isolated Power Supply was developed to meet the high power requirements of Effectrode tube effects pedals. Includes a unique ‘soft-start’ voltage capability, which eliminates tube heater filament flash and thus extends the life of the tubes.#effectrode #atomicpowersupply #power #pedaloftheday #tubeeffects #guitarpedals #guitarfx #effectspedals #guitar #pedalboard #guitareffects #guitargear #guitarist #knowyourtone #guitarpedal #stompbox #guitarplayer #geartalk #fxpedals #guitars #electricguitar #pedalboards #guitare #guitarra #chitarra
The PC-2A is not just for guitar! It works excelle The PC-2A is not just for guitar! It works excellently with bass too!#effectrode #PC-2A #compressor #compressorpedal #bassguitar #guitarsofinstagram #tubeeffects #guitarpedals #guitarfx #effectspedals #guitar #pedalboard #guitareffects #guitargear #guitarist #knowyourtone #guitarshop #stompbox #guitarplayer #geartalk #fxpedals #guitars #electricguitar #pedalboards #guitare #guitarra #chitarra
The Effectrode Tube Drive all tube overdrive is ba The Effectrode Tube Drive all tube overdrive is back in stock!
#effectrode #overdrive #highpower #pedaloftheday #tubeeffects #guitarpedals #guitarfx #effectspedals #guitar #pedalboard #guitareffects #guitargear #guitarist #knowyourtone #guitarsdaily #stompbox #guitarplayer #geartalk #fxpedals #guitars #electricguitar #guitarshop
The Leveling Amplifier was designed as a four knob The Leveling Amplifier was designed as a four knob version of the PC-2A Compressor#effectrode #studiocompressor #compressor #compressorpedal #tubeeffects #guitar #guitarpedalsofinstagram #guitarpedals #tubeamplifier #guitareffects #guitarfx
Follow on Instagram
Copyright © 1963 EFFECTRODE THERMIONIC. All Rights Reserved.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
Cookie SettingsAccept All
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
_GRECAPTCHA5 months 27 daysThis cookie is set by Google. In addition to certain standard Google cookies, reCAPTCHA sets a necessary cookie (_GRECAPTCHA) when executed for the purpose of providing its risk analysis.
cookielawinfo-checkbox-advertisement1 yearSet by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category .
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
JSESSIONIDCookie used to allow the Worldpay payment gateway on the website to function.
machineCookie used to allow the Worldpay payment gateway on the website to function.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
wordpress_logged_in_Users are those people who have registered an account with the WordPress site. On login, WordPress uses the wordpress_[hash] cookie to store your authentication details. Its use is limited to the Administration Screen area, /wp-admin/ After login, WordPress sets the wordpress_logged_in_[hash] cookie, which indicates when you’re logged in, and who you are, for most interface use. WordPress also sets a few wp-settings-{time}-[UID] cookies. The number on the end is your individual user ID from the users database table. This is used to customize your view of admin interface, and possibly also the main site interface.
wordpress_sec_1 yearProvide protection against hackers, store account details.
wordpress_test_cookieTest to see if cookies are enabled.
wp-settings-1 yearWordPress also sets a few wp-settings-{time}-[UID] cookies. The number on the end is your individual user ID from the users database table. This is used to customize your view of admin interface, and possibly also the main site interface.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
CookieDurationDescription
_gat1 minuteThis cookie is installed by Google Universal Analytics to restrain request rate and thus limit the collection of data on high traffic sites.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
_ga2 yearsThe _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_gid1 dayInstalled by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
CookieDurationDescription
mailchimp_landing_site1 monthThis cookie is used to keep track of newsletter sign ups and client emails at checkout, Mailchimp utilises cookies to store information captured from user input for remarketing purposes.
mailchimp_user_email1 monthThis cookie is used to keep track of newsletter sign ups and client emails at checkout, Mailchimp utilises cookies to store information captured from user input for remarketing purposes.
mailchimp_user_previous_email1 monthThis cookie is used to keep track of newsletter sign ups and client emails at checkout, Mailchimp utilises cookies to store information captured from user input for remarketing purposes.
mailchimp.cart.current_emailThis cookie is used to keep track of newsletter sign ups and client emails at checkout, Mailchimp utilises cookies to store information captured from user input for remarketing purposes.
mailchimp.cart.previous_emailThis cookie is used to keep track of newsletter sign ups and client emails at checkout, Mailchimp utilises cookies to store information captured from user input for remarketing purposes.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
CookieDurationDescription
woocommerce_recently_viewedsessionDescription unavailable.
SAVE & ACCEPT
Powered by CookieYes Logo